## FEATURES

- Frequency Range:
- 15 to 170MHz @ 3.3V
- 15 to $145 \mathrm{MHz} @ 2.5 \mathrm{~V}$
- Internal Phase Locked Loop Allows Spread Spectrum Modulation on Reference Clock to Pass to Outputs.
- Zero Input to Output Delay
- Less Than 700ps Device to Device Skew
- Less Than 200ps Skew Between Outputs
- Less Than 100ps Cycle to Cycle Jitter
- 2.5 V or 3.3V Power Supply
- Available in 8-Pin SOP or 6-pin SOT GREEN/ RoHS Compliant Packages


## Low Skew Output Buffer PIN CONFIGURATION



## DESCRIPTION

The PL102-10 is a high performance, low skew, low jitter zero delay buffer designed to distribute high speed clocks and is available in 8 -pin SOP or 6 -pin SOT23 package. It has two outputs that are synchronized with the input. The synchronization is established via CLKOUT feed back to the input of the PLL. Since the skew between the input and output is less than $\pm 350 \mathrm{ps}$, the device acts as a zero delay buffer.

## BLOCK DIAGRAM



## PIN DESCRIPTIONS

| Pin <br> Name | Pin Number |  | Type | Description |  |
| :---: | :---: | :---: | :---: | :--- | :---: |
|  | SOP-8L | SOT23-6L |  |  |  |
| REFIN | 1 | 3 | I | Input reference frequency. Spread spectrum modulation on this <br> signal will be passed to the output (up to 100kHz SST modulation). |  |
| GND | 2 | 2 | $P$ | Ground Connection. |  |
| CLK1 | 3 | 1 | 0 | Buffered clock output. |  |
| CLK2* $^{*}$ | 4 | 6 | 0 | Buffered clock output. |  |
| VDD | 5 | 5 | $P$ | $2.5 V$ or 3.3V Power Supply connection. |  |
| DNC | 6,7 | - | - | Do Not Connect |  |
| CLKOUT | 8 | 4 | 0 | Buffered clock output. Internal feed back on this pin. |  |

*Note: If CLK2 is pulled high during startup the device will enter test mode.

## ELECTRICAL SPECIFICATIONS

1. Absolute Maximum Ratings

| PARAMETERS | SYMBOL | MIN. | MAX. | UNITS |
| :--- | :---: | :---: | :---: | :---: |
| Supply Voltage | $\mathrm{V}_{\mathrm{DD}}$ |  | 4.6 | V |
| Input Voltage, dc | $\mathrm{V}_{\mathrm{I}}$ | -0.5 | $\mathrm{~V}_{\mathrm{DD}}+0.5$ | V |
| Output Voltage, dc | $\mathrm{V}_{0}$ | -0.5 | $\mathrm{~V}_{\mathrm{DD}}+0.5$ | V |
| Storage Temperature | $\mathrm{T}_{\mathrm{S}}$ | -65 | 150 | ${ }^{\circ} \mathrm{C}$ |
| Ambient Operating Temperature ${ }^{*}$ | $\mathrm{~T}_{\mathrm{A}}$ | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |
| Junction Temperature | $\mathrm{T}_{J}$ |  | 125 | ${ }^{\circ} \mathrm{C}$ |
| Lead Temperature (soldering, 10s) |  |  | 260 | ${ }^{\circ} \mathrm{C}$ |

Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the dev ice at these or any other conditions above the operational limits noted in this specification is not implied. *Operating temperature is guaranteed by design. Parts are tested to commercial grade only.

## 2. Electrical Characteristics

| PARAMETERS | SYMBOL | CONDITIONS | MIN. | TYP. | MAX. | UNITS |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | $\mathrm{V}_{\text {DD }}$ |  | 2.25 |  | 3.63 | V |
| Input Low Voltage | $\mathrm{V}_{\mathrm{IL}}$ |  |  |  | 0.8 | V |
| Input High Voltage | $\mathrm{V}_{\text {IH }}$ |  | 2.0 |  |  | V |
| Output Low Voltage | $\mathrm{V}_{\text {OL }}$ | $\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$ |  |  | 0.4 | V |
| Output High Voltage | $\mathrm{V}_{\text {OH }}$ | $\mathrm{I}_{\mathrm{OH}}=24 \mathrm{~mA}$ | 2.4 |  |  | V |
| Supply Current | $\mathrm{I}_{\mathrm{DD}}$ | Unloaded outputs at 100 MHz, <br> $\mathrm{V}_{\text {DD }}=3.3 \mathrm{~V}$. |  | 22 | 30 | mA |

## 3. Switching Characteristics

| PARAMETERS | SYMBOL | CONDITIONS | MIN. | TYP. | MAX. | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input/Output Frequency | t1 | 2.5V/3.3V | 15 |  | 145/170 | MHz |
| Duty Cycle | DC | Measured at $\mathrm{V}_{\mathrm{DD}} / 2, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, $F_{\text {out }}=100 \mathrm{MHz}$ | 45 | 50 | 55 | \% |
| Rise Time | $\mathrm{T}_{\mathrm{r}}$ | Measured between $10 \%$ and $90 \% \mathrm{~V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | 1.2 | 1.5 | ns |
| Fall Time | $\mathrm{T}_{\mathrm{f}}$ | Measured between $90 \%$ and $10 \%, C_{L}=15 \mathrm{pF}$ |  | 1.2 | 1.5 | ns |
| Output to Output Skew | $\mathrm{T}_{\text {skew }}$ | All outputs equally loaded, $C_{L}=15 \mathrm{pF}$ |  |  | 200 | ps |
| Delay, REF Rising Edge to CLKOUT Rising Edge | $\mathrm{T}_{\text {delay }}$ | Measured at $\mathrm{V}_{\text {Do }} / 2$ |  | 0 | $\pm 350$ | ps |
| Device to Device Skew | $\mathrm{T}_{\text {dsk-dsk }}$ | Measured at $\mathrm{V}_{\mathrm{D}} / 2$ on the CLKOUT pins of devices |  | 0 | 700 | ps |
| Cycle to Cycle Jitter | $\mathrm{T}_{\text {cyc-cyc }}$ | Measured at 100 MHz |  |  | 60 | ps |
| PLL Lock Time | $\mathrm{T}_{\text {lock }}$ | Stable power supply, valid clock presented on REF pin |  |  | 1.0 | ms |
| Jitter; Absolute Jitter | $\mathrm{T}_{\text {jabs }}$ | Measured 10,000 cycles, low jitter input signal |  | 20 | 50 | ps |
| Jitter; 1-sigma | $\mathrm{T}_{\mathrm{j} 1-\mathrm{s}}$ | Measured 10,000 cycles, low jitter input signal |  | 9 | 15 | ps |

## SWITCHING WAVEFORMS

## Duty Cycle Timing



## Output - Output Skew



## SWITCHING WAVE FORMS

All Outputs Rise/Fall Time


Input to Output Propagation Delay


Device to Device Skew


## Low Skew Output Buffer

## Output-Output Skew

The skew between CLKOUT and the CLK(1-2) outputs is not dynamically adjusted by the PLL. Since CLKOUT is one of the inputs to the PLL, zero phase difference is maintained from REF to CLKOUT. If all outputs are equally loaded, zero phase difference will be maintained from REF to all outputs.

If applications requiring zero output-output skew, all the outputs must be equally loaded.
If the CLK(1-2) outputs are less loaded than CLKOUT, CLK(1-2) outputs will lead it; if the $\operatorname{CLK}(1-2)$ is more loaded than CLKOUT, CLK(1-2) will lag the CLKOUT.

Since the CLKOUT and the CLK(1-2) outputs are identical, they all start at the same time, but difference loads cause them to have different rise times and different times crossing the measurement thresholds.


REF input and all outputs are equally loaded


REF input and $\operatorname{CLK}(1-2)$ outputs loaded equally, withCLK (1-2) more loaded then CLKOUT.


Advanced
REF input and CLK(1-2) outputs are equally loaded, with CLK(1-2) less loaded than CLKOUT.

SOP-8L

| Symbol | Dimension in MM |  |
| :---: | :---: | :---: |
|  | Min. | Max. |
| A | 1.35 | 1.75 |
| A1 | 0.10 | 0.25 |
| A2 | 1.25 | 1.50 |
| B | 0.33 | 0.53 |
| C | 0.19 | 0.27 |
| D | 4.80 | 5.00 |
| E | 3.80 | 4.00 |
| H | 5.80 | 6.20 |
| L | 0.40 | 0.89 |
| e | 1.27 BSC |  |



## SOT23-6L

| Symbol | Dimension in MM |  |
| :---: | :---: | :---: |
|  | Min. | Max. |
| A | 1.05 | 1.35 |
| A1 | 0.05 | 0.15 |
| A2 | 1.00 | 1.20 |
| B | 0.30 | 0.50 |
| C | 0.08 | 0.20 |
| D | 2.80 | 3.00 |
| E | 1.50 | 1.70 |
| H | 2.60 | 3.0 |
| L | 0.35 | 0.55 |
| e | 0.95 BSC |  |



ORDERING INFORMATION (GREEN PACKAGE COMPLIANT)

## For part ordering, please contact our Sales Department:

2180 Fortune Drive, San Jose, CA 95131, USA
Tel: (408) 944-0800 Fax: (408) 474-1000

## PART NUMBER

The order number for this device is a combination of the following:
Part number, Package type and Operating temperature range


| Part / Order Number | Marking* | Package Option |
| :--- | :--- | :--- |
| PL102-10SC | P102-10 <br> SC <br> LLL | 8-Pin SOP (Tube) |
| PL102-10SC-R | P102-10 <br> SC <br> LLL | 8-Pin SOP (Tape and Reel) |
| PL102-10SI | P102-10 <br> SI <br> LLL | 8-Pin SOP (Tube) |
| PL102-10SI-R | P102-10 <br> SI <br> LLL | 8-Pin SOP (Tape and Reel) |
| PL102-10TC-R | C10A0 <br> LLL | 6-Pin SOT (Tape and Reel) |
| PL102-10TI-R | C10A0 <br> LLLI | 6-Pin SOT (Tape and Reel) |
| ${ }^{*}$ Note: LIL designates lot number |  |  |

*Note: LLL designates lot number

[^0]
[^0]:    Micrel Inc., reserves the right to make changes in its products or specifications, or both at any time without notice. The information furnished by Micrel is believed to be accurate and reliable. However, Micrel makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.
    LIFE SUPPORT POLICY: Micrel's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of Micrel Inc.

